Ising exponents in the two-dimensional site-diluted Ising model
نویسندگان
چکیده
منابع مشابه
Ising Exponents in the Two-dimensional Site-diluted Ising Model
We study the site-diluted Ising model in two dimensions with Monte Carlo simulations. Using nite-size scaling techniques we compute the critical exponents observing deviations from the pure Ising ones. The diierences can be explained as the eeects of logarithmic corrections, without requiring to change the Universality Class.
متن کاملOn the Four-Dimensional Diluted Ising Model
8 we have found critical exponents very similar to those of the pure Ising model. We have found that the value of the critical exponents show that for lattices up to V = 32 4 the system, for p = 0:3, is not described by the mean eld theory, as one might have believed. Moreover the critical exponents that we have found are very near to those of the pure percolation. A possible explanation would ...
متن کاملCritical Behavior of the Two-dimensional Randomly Site-diluted Ising Model via Wang-landau Algorithm
The critical properties of the randomly site-diluted two-dimensional Ising model were studied using the Wang-Landau algorithm. The concentration of nonmagnetic sites was q = 0.1; the remaining sites were occupied by magnetic particles. The study was carried out in the appropriate restricted but dominant energy subspaces. The main effort was focused on the specific heat and magnetic susceptibili...
متن کاملTwo-Dimensional Ising Model and Local Nonuniversality of Critical Exponents
The Ising model is the simplest model of magnetism and was proposed by Ising [1] in 1925. The most interesting property of this model was discovered by Onsager [2] for the two-dimensional model in 1944. This model has a phase transition and was the basis for the modern theory of phase transitions. The 8-vertex model was solved by Baxter [3] and has a nonuniversal behavior that manifests itself ...
متن کاملThe Site-Diluted Ising Model in Four Dimensions
In the literature, there are five distinct, fragmented sets of analytic predictions for the scaling behaviour at the phase transition in the random-site Ising model in four dimensions. Here, the scaling relations for logarithmic corrections are used to complete the scaling pictures for each set. A numerical approach is then used to confirm the leading scaling picture coming from these predictio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1997
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/30/24/006